This site uses cookies and similar technologies.

If you not change browser settings or click on the link in the Privacy Statement, you agree to it. Learn more

I understand

Panexin basic


Panexin basic is a fully defined serum replacement for the cultivation of adherent and non-adherent cells under serum-free culture conditions or to significantly reduce the amount of serum in cell culture. It supports the growth of many cell types in an optimum manner without any extra handling compared to serum.

You can find more information in our flyer.

Sample Request!

DescriptionSizeProduct numberDatasheet
Panexin basic 50 ml
100 ml
500 ml
P04-96090
P04-96900
P04-96950
Adobe PDF file icon 32x32
 
Panexin basic contains purified proteins, lipids, salts, amino acids, trace elements, hormones and a 3-dimensional substrate release system in an optimized formulation. It contains no growth factors, undefined hydrolysates or peptones.
Panexin basic is suitable for the cultivation of a variety of adherent and non-adherent cells under serum-free culture conditions. Further informations can be found in the datasheet.
Panexin basic is designed to replace or to reduce serum in the cell culture in a very simple manner. In most cases there is no need to change the basal medium. As Panexin basic is fully defined and contains no peptones or hydrolysates, lot testing is no more necessary. It also allows high reproducibility and a simplified downstream process. Panexin basic contains no growth factors and enables defined proliferation and differentiation of stem cells. Characterization studies of growth factors will obtain more reproducible and clearer results. Panexin basic is also useful to develop sensitive cell-based in vitro tests and coculture procedures.
Panexin products are fully defined serum substitutes, which have been successfully applied for a wide range of cell cultures.

Human pancreatic adenocarcinoma cells

• Gamper et al., Cell Biology International Volume 40, Issue 10, Pages 1050–106, 2016.
http://onlinelibrary.wiley.com/doi/10.1002/cbin.10645/full
• Freud et al., Preprints 2016, 2016100056
www.preprints.org/manuscript/201610.0056/v1/download
• Schlingensiepen et al., Cancer Science Volume 102, Issue 6 June 2011 Pages 1193–1200
http://onlinelibrary.wiley.com/doi/10.1111/j.1349-7006.2011.01917.x/full
• HouHou et al., Patent US20110171213 A1

Human prostate cancer cells

• Lisa Rauschenberger, Dissertation „Strukturelle und funktionelle Charakterisierung von Exosomen aus Prostatakarzinomzellen“, 2016.
http://d-nb.info/111106475X/34
• Rauschenberger et al., Prostate. 2016 Mar;76(4):409-24
https://www.ncbi.nlm.nih.gov/pubmed/26643154
• Stope et al., Anticancer Res. 2013 Nov;33(11):4921-6
https://www.ncbi.nlm.nih.gov/pubmed/24222130

Human liposarcoma

• Harati et al., Int J Mol Med. 2016 Jun; 37(6): 1535–1541.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4867885/pdf/ijmm-37-06-1535.pdf

Tumor (adenocarcinoma) primary fibroblasts

• Castoldi, Dissertation “Generation and characterization of multi-specific antibodies for therapeutic applications in oncology”, 2014.
https://edoc.ub.uni-muenchen.de/16625/1/Castoldi_Raffaella.pdf

Human hepatoblastoma cells

• S Beckers, Dissertation “High throughput toxicity, physiological and metabolic studies for the characterization of hepatocytes and human embryonic stem cell derived hepatocyte-like cells.”, 2011
http://scidok.sulb.uni-saarland.de/volltexte/2011/3665/pdf/Dissertation_Simone_Beckers_23.03_neu.pdf

Human breast cancer cell

• Peter et al., Journal of Biomolecular Techniques 18:287–297 © 2007 ABRF
https://www.researchgate.net/profile/Jochen_Peter/publication/5682413_Enrichment_and_detection_of_molecules_secreted_by_tumor_cells_using_magnetic_reversed-phase_particles_and_LC-MALDI-TOF-MS/links/5460abd40cf2c1a63bfeb17e.pdf

Rheumatoid arthritis synovial fibroblasts

• Zimmermann-Geller et al., The Journal of Immunology October 1, 2016 vol. 197 no. 7 2589-2597.
http://www.jimmunol.org/content/197/7/2589.short

Coculture: Human liposarcoma cells and tumor-associated fibroblasts

• Harati et al., Int J Mol Med. 2016 Jun; 37(6): 1535–1541.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4867885/pdf/ijmm-37-06-1535.pdf.

Coculture: MRC5 and tumor-associated fibroblasts

• Majety et al., PLOS ONE | DOI:10.1371/journal.pone.0127948 June 8, 2015
http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0127948&type=printable.

Coculture: SZ95 sebocytes and normal human fibroblasts

• Nikolakis et al., https://www.ncbi.nlm.nih.gov/pubmed/25828468
http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0127948&type=printable.

Coculture: H596 and normal and tumor (adenocarcinoma) primary fibroblasts

• Castoldi, Dissertation “Generation and characterization of multi-specific antibodies for therapeutic applications in oncology”, 2014
https://edoc.ub.uni-muenchen.de/16625/1/Castoldi_Raffaella.pdf

Human corneal epithelial cells

• Hahne et al., Int J Pharm. 2011 Sep 15;416(1):268-79
https://www.ncbi.nlm.nih.gov/pubmed/21771646

Human myometrial microvascular endothelial cells

• Dietrich et al., Fertil Steril. 2011 Mar 15;95(4):1247-55.e1-2
https://www.ncbi.nlm.nih.gov/pubmed/21130428

rMSC

• Puts et al., Ultrasound in Medicine & Biology, Volume 42, Issue 12, December 2016, Pages 2965–2974.
http://ieeexplore.ieee.org/document/7317777/
• Puts et al., Ultrasonics Symposium (IUS), 2014 IEEE International,3-6 Sept. 2014
http://ieeexplore.ieee.org/document/6932303/

hMSC

• Ichikawa et al., Cell Biol Int. 2010 Apr 27;34(6):615-20
https://www.ncbi.nlm.nih.gov/pubmed/20218971

Hematopoietic cells

• Ridder et al., PLoS Biol. 2014 Jun; 12(6): e1001874.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4043485/

Bone marrow derived macrophages

• Stolt et al., J Immunol. 2016 Aug 1;197(3):834-46.
http://www.jimmunol.org/content/197/3/834.short
• Hommes et al., Am J Respir Cell Mol Biol. 2015 Nov;53(5):647-55
http://www.atsjournals.org/doi/pdf/10.1165/rcmb.2014-0485OC
• Hof et al., Infect Immun. 2014 May; 82(5): 2006–2015
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3993457/
• Depke et al., Journal of Proteomics Volume 103, 30 May 2014, Pages 72–86
http://www.sciencedirect.com/science/article/pii/S1874391914001493
• Schramm et al., Eur. J. Immunol. 2014. 44: 728–741.
http://onlinelibrary.wiley.com/doi/10.1002/eji.201343940/full
• Bast et al., LoS Pathog 10(3): e1003986. doi:10.1371/journal.ppat.1003986.
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1003986
• Koh et al., PLoS Negl Trop Dis. 2013 Oct; 7(10): e2500
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798430/
• Farinacci et al., Vaccine. 2012 Dec 14;30(52):7608-14
https://www.ncbi.nlm.nih.gov/pubmed/23088886
• Erttmann et al., Free Radic Biol Med. 2011 Aug 1;51(3):626-40
http://www.sciencedirect.com/science/article/pii/S0891584911003248
• Norville et al., Microbiology. 2011 Sep;157(Pt 9):2629-38
https://www.ncbi.nlm.nih.gov/pubmed/21680634
• Breitbach et al., BMC Immunol. 2011; 12: 20
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072354/
• Bast et al., Toxicol In Vitro. 2010 Mar;24(2):686-94.
https://www.ncbi.nlm.nih.gov/pubmed/20869433
• Eske et al., J Immunol Methods. 2009 Mar 15;342(1-2):13-9.
https://www.ncbi.nlm.nih.gov/pubmed/19133267
• Breitbach et al., Infect Immun. 2009 Apr; 77(4): 1589–1595
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2663179/
• Traeger et al., Infect Immun. 2008 Nov; 76(11): 5285–5293
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2573314/

HEK

• Lisa Rauschenberger, Dissertation „Strukturelle und funktionelle Charakterisierung von Exosomen aus Prostatakarzinomzellen“, 2016.
http://d-nb.info/111106475X/34
• Into et al., Mol Cell Biol. 2008 Feb; 28(4): 1338–1347.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2258749/

And many more!!!